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Abstract. The variational formulation of mechanical problems involving nonmonotone, possibly
multivalued, material or boundary laws leads to hemivariational inequalities. The solutions of the
hemivariational inequalities constitute substationarity points of the related energy (super)potentials.
For their computation convex and global optimization algorithms have been proposed instead of the
earlier nonlinear optimization methods, due to the lack of smoothness and convexity of the potential.
In earlier works one of us has proposed an approach based on the decomposition of the solutions
space into convex parts resulting in a sequence of convex optimization subproblems with different
feasible sets. In this case nonconvexity of the potential was attributed to (generalized) gradient jumps.
In order to treat ‘softening’ material effects, in the present paper this method is extended to cover
also energy functionals where nonconvexity is caused by the existence of concave sections. The
nonconvex minimization problem is formulated as d.c. (difference convex) minimization and an
algorithm of the branch and bound type based on simplex partitions is adapted for its treatment.
The partitioning scheme employed here is adapted to the large dimension of the problem and the
approximation steps are equivalent to convex minimization subproblems of the same structure as the
ones arising in unilateral problems of mechanics. The paper concludes with a numerical example and
a discussion of the properties and the applicability of the method.

Key words: Hemivariational inequalities, nonconvex superpotentials, softening materials, d.c. min-
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1. Introduction

The equilibrium conditions of classical nonlinear mechanics problems are systems
of partial differential equations which are usually formulated as variational equali-
ties involving smooth potentials with the aid of the calculus of variations (the well
known ‘principles’ of minimum potential or complementary energy) [1]. Finding
the equilibrium configuration of a structural system is then equivalent to mini-
mizing a quadratic potential functional in the displacement space (usual primary
variables) in the case of linear elasticity or a smooth and convex functional when
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a more general smooth and monotone material law is employed. This is valid as
long as the structure remains in a normal operational framework, i.e. the loads are
not severe enough to cause structural damage or change the response mode of the
structural members (e.g. buckling of slender steel columns) and no other complex
physical mechanisms (material behaviour, unilateral contact etc.) contribute to the
energy balance of the system.

Modern engineering applications made necessary the introduction of material
laws and interface conditions that include complete ascending and descending
vertical branches and inclined decreasing branches. Such stress-strain (material)
and force-displacement (boundary) laws describe macroscopically a variety of
response changes such as locking or the gradual loss of strength [2–7]. When the
material law is monotone and multivalued the corresponding potential is convex
but nonsmooth and the equilibrium problem is expressed as a variational inequality
or equivalently as a convex minimization problem [3, 8]. Nonmonotone laws, i.e.
laws containing vertical or inclined descending branches describe various aspects of
strength degradation. In this case the corresponding superpotentials are nonconvex
and maybe nonsmooth (depending on the existence of vertical branches) and the
variational form of the equilibrium problem is a hemivariational inequality [3, 5,
6, 9]. The study of the variational inequalities is based on monotonicity arguments
[3], while the study of hemivariational inequalities is based on weak compactness
arguments due to the lack of convexity of the superpotentials involved [6]. If some
mild conditions on the growth of the nonsmooth superpotentials are fulfilled, then
the corresponding potential and complementary energy functionals can be obtained
for the whole structure [3, 6], whose substationarity points (all the local minima,
local maxima or saddle points) provide all the solutions of the hemivariational
inequality. This is a generalization of the minimum potential and complementary
energy theorems which hold for the case of monotone material laws leading to
variational equalities and inequalities [3, 10]. We note that in the absence of these
growth conditions the hemivariational inequality may have solutions that are not
substationarity points.

Recently, the notion of the quasidifferential of a general nonsmooth and noncon-
vex functional has been employed for the formulation of a new kind of variational
expressions that generalize the variational equations and inequalities and provide
a useful tool for the treatment of the hemivariational inequalities [5, 11–13]. The
quasidifferential is set-valued generalization of the gradient operator of smooth
potentials and coincides with the subdifferential for the case of convex (nons-
mooth) functionals. Convexity and concavity are described separately by the two
sets comprising the quasidifferential. The difference convex (d.c.) approximation
of nonconvex functionals, where the functional is written as a difference of two
convex components [14], is also covered by the quasidifferential as a special case.
For an extensive analysis and discussion see [13].
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Although the progress in the theoretical study of the existence and approx-
imation questions for the hemivariational inequalities is considerable [6, 9, 15]
relatively few efficient methods exist for their numerical treatment.

The determination of the full set of solutions of a substationarity problem, even
when only smooth functionals are involved, remains an as yet open problem and
constitutes an area of active research in the field of computational mechanics. This
indeed holds for a global optimization problem as well, the latter being a particular
case of the general substationarity problem [16, 17]. However, in the majority
of engineering problems instead of the complete set of solutions only a subset is
sought that contains the stable and unstable solutions on a loading path: the external
action (load) is applied gradually on the structure in a quasistatic way (in the sense
that the application is slow enough that the structure has the time to equilibrate)
and the resulting path of equilibrium points must be traced [18–20]. Using small
load increments the path-following problem is broken down into a sequence of
equilibrium subproblems each having a single or restricted number of mechan-
ically acceptable solutions at most. Since many types of mechanical behaviour
are history or path dependent the ‘acceptable’ substationarity point is affected by
intermediate stages of the mechanical process. Consequently, the existing noncon-
vex optimization algorithms that locate some local or the global minimum provide
only a partial remedy for engineering problems, unless appropriately adapted. In
the following we focus our attention to the treatment of a quasistatic subproblem
where the load level remains constant and the starting point in the displacement
space (initial configuration of the structure) is acceptable but non-equilibrating.

An additional restriction arises from the fact that problems encountered in
mechanics usually have a very large dimension, of the order of several thousands
of degrees of freedom, which limits significantly the applicability of the available
methods and makes necessary the exploitation of all particular characteristics of
the problem (e.g. possible partial convexity, sparsity etc.).

Among the methods that have been proposed until now for the treatment of the
nonsmooth and nonconvex problems of mechanics, two lines of approach have been
proved most fruitful: the quasi-differentiability approximation and the sequential
approximation of the hemivariational inequality by variational inequalities. The
former resolves in the solution of a sequence of steepest descent finding subprob-
lems using polyhedral approximations of the quasidifferential or codifferential set
that contains local gradient information [5, 11, 13]. In the latter approach the solu-
tion of the hemivariational inequality (nonconvex problem) is approximated by a
sequence of appropriately formulated variational inequalities (nonsmooth convex
problems) that are treated by existing efficient convex minimization algorithms
[21–26]. The major advantage of the quasi-differentiability approach is the accu-
rate representation of the gradient information that makes it particularly efficient
for the treatment of points where nonconvexity and nonsmoothness are combined
(crisps). In contrast, the sequential approximation methods are employing rules
based on mechanical reasoning for the management of crisps. However, a signif-
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icant advantage of the latter is the high convergence rate attained in the parts of
the solutions space where the functionals are convex even if they are nonsmooth.
This is due to the fact that these methods exploit efficiently the second order infor-
mation available that is a controlling factor for the majority of the mechanical
problems. Indeed the former procedure has proved efficient for the treatment of
problems where multiple crisps have to be passed along the loading path while
the second in cases where the number of the monotonicity changes in the material
laws employed are relatively few (e.g. in the case of zig-zag stress-strain laws)
[13, x4]. We note that both procedures can be combined with modern nonlinear
finite element methods and are able to treat problems of large dimension arising in
structural modelling.

In the present paper we attempt to combine the positive characteristics of the
first and second order approximations with the aid of d.c. minimization methods. A
method of the sequential approximation type proposed earlier by one of us [22, 24]
and based on the multilevel decomposition of the solution space is extended here
by the hypodifferential descent method for the treatment of crisps [12, 13] and
a d.c. minimization procedure for the treatment of the sections of the domain
where some parts of the potential functional are concave [14, 16, 27]. While
the original procedure was applicable to problems where the nonconvex energy
terms can be decomposed into convex constituents, the method proposed here is
able to treat efficiently a more general family of nonconvex functionals, roughly
speaking, these that can be decomposed into convex or concave parts, e.g. arising
from material laws composed of (vertical or inclined) ascending or descending
(softening) branches. More than the significantly wider range of application, a
particularly useful characteristic of the method from the engineering point of view
is the possibility it offers to attribute mechanical meaning to the approximation steps
employed, making thus easier the correlation of the mathematical and mechanical
model.

In the following section we discuss the mathematical problem of equilibrium
in mechanics for the general case of a nonmonotone and nonsmooth material or
interface law. An algorithm is proposed for the treatment of the resulting substa-
tionarity problem for a wide class of energy functionals. In Section 3 we focus our
attention to the main subproblem of the algorithm, that is reformulated as a d.c.
minimization problem and is solved through a branch and bound type of proce-
dure based on simplex subdivision. The solution is approximated by a sequence
of convex minimization problems identical to the monotone material problems of
mechanics. The final section concludes with a numerical example and a discussion
of the properties and the implementation of the method.
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2. The Energy Optimization Problem and the Feasible Domain
Decomposition

We consider a structure which occupies 
 � R
3 in the initial state (assumed

undeformed or equilibrating under the previous load increment). Lete= feijg; s =

fsijg 2 R
6 denote the strain and stress tensors and u(x);p(x) 2 R

3 ;x 2 
 the
displacements and external loads. For simplicity of the mathematical expressions
we consider here only unconstrained structures (i.e. the kinematically admissible
displacement set is Uad = R

3 ). The application range of the developed procedure
is not affected since equality and inequality boundary constraints of the same type
as the material laws described next can be easily incorporated in the model.

The behaviour of each element of the structure is described by the material law:

s 2 �@w(e) (1)

where w is the nonconvex and nonsmooth strain energy density. Here �@ denotes
the generalized gradient of Clarke which constitutes an extension of the usual
differential to nonsmooth and nonconvex functionals [3, 5]. We recall that (1) is
by definition equivalent to: w0(e; e�) � sijeij 8 e 2 R

6 where w0(:; :) denotes the
directional derivative of Clarke. Under the assumption of small deformations each
equilibrium state of the structure fulfills the expression:Z



sij[eij(v)� eij(u)] d
 = (p;v � u) 8v 2 R

3 : (2)

This is the expression of the ‘principle’ of virtual work characterizing the equi-
librium position where the bilinear form (p;v) expresses the virtual work of the
external forces. Using the inequality form of (1) we transform (2) to the following
hemivariational inequality [9]:

Pv : find u2R3 :
Z


w0[e(u); e(v � u)] d
 � (p;v � u) 8v 2 R3 (3)

Next we introduce the ‘potential energy’ functional:

�(u) =W (u)� (p;u) ; W (u) =

Z


w(e) d
: (4)

The following substationarity problem is now considered:

Pw : find u 2 R
3 : 0 2 �@�(u): (5)

If � is convex then �@� coincides with the subdifferential @� of convex analysis
and Pw becomes a convex minimization problem [3]. If the functional w is locally
Lipschitz and satisfies a growth assumption [6, proposition 4.1] and a regularity
assumption (�@-regularity) then every solution of the substationarity problemPw is
a solution of the hemivariational inequality Pv and conversely.

As it has been mentioned in the introduction the numerical solution ofPw in the
general case is yet an open problem. Thus, in the following we will focus to a class
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of nonsmooth and nonconvex functionals which are able to model a wide range
of locking, cracking and crushing effects that are encountered in mechanics. We
assume that the strain space (D(w) = R

6 ) can be partitioned into a finite number
of subsetsA1; . . . ; Ak having common boundaries such that within each subset �@w
is monotone or equivalently w is convex or concave only. We note that a similar
but more restricted class of functionals decomposable into convex parts has been
employed in [22, 24].

For a given displacement field u(x) we derive the corresponding strain field
e(u(x)) and create a complete decomposition of the structure 
 into nonoverlap-
ping subsets 
1; . . . ;
m whose contents have strains belonging to the same strain
space partition. Each subset
j is characterized by the index i of the corresponding
partition Ai:

I(
j) = i , 
j = fx 2 
 : e(u(x)) 2 Aig: (6)

The determination of the properties of the sets Ai;
j is a difficult, still open,
mathematical problem of mechanics. We assume that Ai’s are convex closed sets
with common boundaries since this condition assures solution uniqueness for the
substationarity problem in the simplest convex case. Let each partition be described
by set of inequalities: Ai = fe : fi(e) � 0g where each fi is a set of convex func-
tions. Although the theory does not exclude the possibility of very complicated
decomposition topologies for 
, in most numerical applications a ‘certain con-
tinuity’ of mechanical behavior leads to rather simple topological forms for the
decomposition of the structure. We assume here that subsets with common borders
correspond to neighboring partitions of the strain space. We denote by @Ai; @
j

the boundaries of the sets Ai;
j’s. Since these boundaries separate subsets with
oppositew ‘curvature’, they mark the position of nonconvexity ‘crisps’ in the strain
space and within the structure 
j .

We consider the case of variation of the displacements only on 
j’s such that
the decomposition of
 is kept unchanged or equivalently the position of the subset
boundaries @
j is constant. Under this assumption the admissible displacements
set of Pw is restricted to:

~Uad = fu : e(u(x)) 2 A
I(
j) 8x 2 
j j = 1; . . . ;mg: (7)

Using the decomposition of 
 we may write at any step of the calculation the
functionals �;W of (4) as:

~�(u) = ~W (u)� (p;u) ~W (u) =

mX
j=1

Z


j

w(e) d
: (8)

By definition w is either convex or concave for e(u) 2 Ai and consequently if

j remains unchanged for a variation of the displacement field the corresponding
term in the sum becomes either convex or concave. Furthermore, for u 2 ~Uad we
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can separate the convex and concave terms of ~�; ~W and express them as a sum
of two parts having opposite ‘curvature’ or equivalently as a difference of convex
functions.

Concerning the properties of the constraint set ~Uad we observe that the strains
are affine functions the displacements (small strain theory) and the strain space
partitions are convex sets by definition. Consequently the constraints fi(e(u)) � 0
are convex in the displacement space and their intersection ~Uad is also a convex
set.

The initial substationarity problem Pw when solved over ~Uad is reduced to:

Pr : find u 2 ~Uad : 0 2 �@ ~�(u): (9)

According to the previous observation this is a d.c. minimization problem that can
be treated by existing global minimization algorithms.

Obviously, if the assumed decomposition of 
 is correct, at the solution of
Pr the inclusions of (7) are satisfied automatically and all the constraints in the
definition of ~Uad must be inactive or weakly active at most. Conversely, a solution
that activates strongly some constraints of (7) signifies that the decomposition of

is not accurate. Since the Lagrange multiplier of a constraint in mechanics expresses
the corresponding reaction force, the ‘reactions’ of the constraints imposed through
~Uad can be thought as the part of the load that has not been transferred to the material
of the structure but is supported by the artificial internal boundaries @
j . Thus the
strongly active constraints of ~Uad offer an indication of the boundaries between the
current subsets 
j that must be moved and of new subsets that must be added to
the decomposition.

Attempting to exploit the particular form of ~� as a d.c. function we are led
to the following iterative algorithm for the treatment of the initial substationarity
problem Pw:
1. Compute an initial decomposition of 
 for u0.

Define ~U1
ad for u0 according to (7) and set k = 1

2. Solve the restricted form Pr
k of Pw on ~Uk

ad to derive uk.
3. If uk in the interior of ~Uk

ad stop.
else: modify the decomposition of 
, define a new ~Uk+1

ad

set k = k + 1 and restart from step 2.
While at the end of each iteration the kinematical conditions imposed through

~Uk
ad are satisfied, the static conditions are not (there exist some non zero reactions of

the artificial internal boundaries). The static condition violations are reduced at step
3 with each adaptation of the decomposition of 
 or equivalently the movement of
the subset boundaries @
j .

Since our purpose is not to find the global minimum of � but the equilibrium
configuration that is nearest to the origin, at the beginning we set u0 = 0, i.e.
we consider an initially undeformed structure. In this case definition (7) results
in: 
1 � 
 and ~U0

ad = fu : f1(e(u)) � 0g. Furthermore, the purpose of the



140 M. A. TZAFEROPOULOS AND A. A. LIOLIOS

decomposition modifications performed at the step 3 is the determination of the
‘nearest’ minimum in the mechanical sense. The procedure is terminated when the
first ‘interior’ minimum is found (with respect to ~Uk

ad).
The modification of the 
 decomposition can be performed in various ways

depending on the complexity of the curvature changes in the energy density func-
tional (indicated by the number of the strain space partitions). In simple cases,
direct mechanical reasoning may be employed based on the aforementioned inter-
pretation of the Lagrange multipliers of the activated constraints [22, 25]. More
complicated functionals can be treated by the the procedure of [24, 26] where the
position of each internal boundary is computed by solving a sequence of variation-
al inequality pairs. A mathematically oriented alternative is the derivation of the
quasidifferential of the potential for the current point at the displacement space (see
the introduction for discussion and references). It is followed by the computation
of a descent direction (first order approximation) defining the internal boundary
modifications and concludes with a line search along this direction.

The treatment of the large size d.c. minimization problems Pr arising at step 2
will be discussed in the following section in detail since they are critical for the
applicability and the effectiveness of the procedure.

We note that the mechanical model described at the beginning of this section
is based on a holonomic assumption, i.e. that the effects of the applied external
actions are fully reversible. Although this condition is not satisfied in the general
case where the material may undergo permanent damage and the load distributed
to some parts of the structure may decrease, it becomes unnecessary if we assume
that unloading does not occur in any part of the structure as it happens in many
cases. For an alternative model taking into consideration an additional ‘damage’
parameter we refer to [26, x5].

3. Treatment of the D.C. Minimization Subproblem

The major part of the computational effort in the procedure of the previous section
is spend at the repeated solution of subproblemPr of step 2. Obviously, the efficient
treatment of Pr will decide the applicability of the algorithm. As it has already
been noted in the introduction the large size of Pr is of critical importance, since
it restricts significantly the range of the applicable methods and makes necessary
the exploitation of all existing sparsity patterns.

First we reformulate Pr as a d.c. minimization problem and then we adapt a
typical algorithm of the branch and bound family for its treatment. The global
minimum of ~�(u) over ~Uad is determined by a sequence of steps where a lin-
ear underestimator of a concave function is minimized over a convex domain.
We show that each step of the approximation sequence can be formulated as a
minimization of a convex potential energy term over ~Uad which expresses the
kinematical constraints. This last problem can be seen as the equilibrium problem
for the ‘resisting’ part of the initial structure subject to some unilateral constraints
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and under the action of the initial load combined with an additional load due to the
softening of the rest of the structure.

For the sake of clarity, instead of the continuous form of Pr in this section
we discuss its discrete form. We assume that the structure has been discretized
by finite elements. In the following vector quantities will be printed boldface.
Let u;p 2 R

n denote the nodal displacement and force vectors respectively,
while ei; si are the strain and stress vectors for element i. Here Wj(u) denote
the integrals

R

j

w(e(u)) d
 where the integrals imply summation over the finite
elements composing 
j and the integration volumes are kept constant according
to the definition of Pr (7)–(9). The admissible displacement set is defined by sets
of convex constraints gj(u) � 0 corresponding to each subset 
j of the structure,
derived from fi(ei(u)) � 0 for i = I(
j) (see discussion following the definition
(6)). Then the subproblem Pr takes the form:

P1 : min
u2Rn

f~�(u) =

mX
j=1

Wj(u)� pTu : u 2 ~Uadg (10)

where: ~Uad = fu 2 R
n : gj(u) � 0 j = 1; . . . ;mg: (11)

We are reminded that Wj’s are either convex or concave functionals of u according
to the definition of the respective strain space partitions Ai. After a renumbering
of Wj’s, the sum in ~� can be separated into two parts: �;	 where the convex and
concave components are collected:

�(u) =

lX
j=1

Wj(u)� pTu 	(u) =

mX
j=l+1

Wj(u): (12)

Here � expresses the potential energy of the ‘resisting’ part of the structure under
the action of a load p, while 	 is the potential of the elements in the ‘softening’
regime. Finally, P1 takes the form:

P2 : min
u2Rn

f~�(u) = �(u) + 	(u) : u 2 ~Uadg (13)

where �;	 are the convex and concave parts of ~� and ~Uad is given by (11).
Introducing an independent variable t we rewrite P2 as [28]:

P3 : min
~u2D

f�0(~u) = t+	(u)g (14)

where: ~u = (u; t) 2 R
n+1

D = f~u : u 2 ~Uad;�(u)� t � 0g (15)

where the function to be minimized is concave while the feasible domainD remains
convex due to the convexity of ~Uad and �.

For the treatment of P3 we adapt an algorithm of the branch and bound type
proposed by R. Horst [28, 29], [16, x6.2]. We define initially a simplex S1 2 R

n+1
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containing the solution set and subsequently we partition it into subsimplices Sn.
Over each simplex we derive the (linear) convex envelope L(~u) of �0(~u) which is
then minimized over Sn \D, thus providing a nondecreasing sequence of lower
bounds for the global minimum of �0.

The starting simplex S1 = [�0; �1; . . . ; �n+1] is constructed such that it is
the smallest one containing the solution set. Its edges (�0; �1); . . . ; (�0; �n+1)

parallel the coordinate axes. We observe that �0 is a linearly increasing function
of t and that 	 depends on u only. Consequently, for a particular u, �0 takes
a minimum value at �(u) = t and the solution set of P3 may be reduced to
D0 = f~u : u 2 ~Uad;�(u) = tg instead of D.

In the case of a general admissible displacement set ~Uad we define the coor-
dinates for the origin �0 of the starting simplex as the solutions of n + 1 linear
programs over a convex set:

�0
j = arg min

~u2D
~uj j = 1; . . . ; n+ 1: (16)

If ~Uad has a special structure, exploitation of its particular characteristics may offer
a direct way for deriving the extrema, avoiding the solution of linear subproblems
(e.g. ~Uad polyhedral or defined as the intersection of strips lying between parallel
hyperplanes, as in the case of a rectangular decomposition of the strain space).

The remaining vertices are chosen as the intersection of rays emanating from
�0 parallel to the coordinate axes with a hyperplane:

Pn+1
i=1 (~ui � �oi ) = c, where c

is computed from:

c+

n+1X
i=1

�oi = arg max
~u2D0

n+1X
i=1

~ui = arg max
u2

~Uad

�(u)=t

f

nX
i=1

ui + tg

= arg max
u2

~Uad

f

nX
i=1

ui +�(u)g: (17)

Problem (17) is a convex maximization problem and only an overestimator of
its solution is needed. An appropriate overestimator is the maximum of the same
function over a simplex containing ~Uad which in turn is smaller than the maximum
of a linear function with the same values at the vertices of the simplex. Thus (17)
is reduced to the solution of a linear program [16, x1.5]. An appropriate simplex
in Rn can be constructed by the same technique as before by employing the first n
solutions of (16) for the location of the origin �0 and setting the remaining vertices
to: �i = �0 + c0ei i = 1; . . . ; n where: c0 = max

u2
~Uad

Pn
j=1 uj and ei is the ith

unit coordinate vector.
After deriving c, the vertices of S1 are computed by:

�i = �0 + cei i = 1; . . . ; n+ 1: (18)
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For S1 thus defined, �n+1 (corresponding to the t direction) is the only feasible
vertex with respect to the constraint�(u)� t � 0, while �0; . . . ; �n and the whole
facet ofS1 defined by them are infeasible. We note that this method for constructing
S1 requires the solution of n+ 3 linear programs of dimension n or n+ 1 over ~Uad

or D respectively. Linear problems of this type constitute the main subproblem of
the iterative procedure used for the solution of P3 and their numerical treatment
will be discussed after the outline of the main minimization algorithm.

Considering that the solution of P3 lies on the boundary D0 of D, in the
following we adapt the simplex subdivision method such that the search in the
n + 1’st direction of the ~u-space is avoided (un+1 � t). Let S = [�0; . . . ; �n+1]

be a simplex and T = [�0; . . . ; �n] one facet of it. Initially we find the longest
edge of T that is an edge of S also. Subsequently we construct two subsimplices
S0; S00 of S by replacing the vertices of S defining this edge by its midpoint. In this
partitioning of S all subsimplices have a common vertex �n+1.

The convex envelope of the concave function �0 of P3 over a simplex S is a
linear function L(~u) which agrees with �0 at all vertices of S. Let S1; S2; . . . ; S�
be sequence of simplices where each element is derived by subdividing its prede-
cessor as above and let L1; L2; . . . ; L� be the corresponding convex envelopes. It
is not difficult to extend Theorem 6.2.2 of [16] to show that for such a sequence
exists an ‘accumulation’ line (�n+1; �) with � 2 T satisfying: lim�!1 S� =

\1k=1Sk = (�n+1; �). Furthermore, the sequence of convex envelopes is nonde-
creasing: L��1(~u) � L�(~u) � �0(~u) 8~u 2 S� for � = 1; 2; . . .

The current definition of the starting simplex and the modification of the sub-
division method of [16, x6.2] introduced here, do not alter the structure of the
original algorithm for the treatment of the concave minimization problem P3. For
completeness, we outline next the main steps of the procedure (Jk denotes the set
of the indices of the candidate simplices at each iteration k):
1. Set k = 1; Jk = f1g and construct S1

2. For all i 2 Jk solve the linear program:
P4 : ~ui = arg min

u2D\Si
fLi(~u)g (19)

and find j = arg min
i2Jk

Li(~ui)

3. If j�0(~uj)� Lj(~uj)j � � stop, ~uj solves problems P1-P3.

else: partition Sj into subsimplices Sj0 ; Sj00 , set Jk+1 = Jk [ fj0; j00g � fjg,
k = k + 1 and restart from step 2.

We note that for each iteration only the pair of subproblems P4 defined on the
new simplices have to be solved since the minima on the remaining simplices with
indices in Jk have been derived in previous iterations.

We discuss next the numerical treatment of the main subproblem P4. We are
reminded that linear problems with a feasible set of a similar structure arose also
during the construction of the starting simplex.P4 is a linear minimization problem
with objective function L(~u) = ~bT ~u+d = bTu+ b0t+d subject to the following
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sets of convex constraints:

C1 : ~u � (u; t) 2 S

C2 : u 2 ~Uad

(11)
() gj(u) � 0 j = 1; . . . ;m

C3 : �(u)� t � 0

The characteristics of each group are quite different and call for a particular treat-
ment. The simplex constraint C1 can be expressed as a system of linear inequalities,
while the admissible displacement constraints C2 give rise to a system of convex
but possibly nonsmooth inequalities. Since only the strain of a single element is
involved in each inequality of the latter group (gj(ej(u)) � 0) and the element
strain is expressed as a function of a few nodal displacements only (these of the
nodes connected with this element), each inequality involves a small number of
displacement variables. Furthermore, as it was noted earlier, there exist cases where
these inequalities may have the form of simple bounds on element strains and result
in a polyhedral ~Uad. In contrast, the last constraint C3 involves the strains of numer-
ous elements (1; . . . ; l) or equivalently a large part of the displacement variables,
thus resulting in a quite complex expression. The availability of curvature infor-
mation for C2 and particularly for C3 may also be exploited for the acceleration of
the solution procedure. We note that the expression of the constraints in separable
form, even if not impossible, is not considered a practical option.

We assume that an iterative minimization algorithm will be used, leading to a
sequence of points approximating the minimum of P4. At each iteration a descent
direction is first defined and then a line minimization is performed along it. Here
we focus our attention in the derivation of the search direction at a feasible point
since it will determine largely the efficiency of the overall procedure. Because
the common vertex �n+1 of all subsimplices is feasible, we examine initially if it
constitutes a solution of P4, a fact that can be tested directly. If this is not the case
and since no other vertex of S may be a solution (due to infeasibility with respect to
C3) at least one of the last two sets of constraints must be active at the solution. We
examine now the most complicated case, i.e. the case of C3 being active together
with C1 and C2. The following discussion applies also to the simpler case where C1

and C2 are active, but not C3.
Facets of S active at the solution (C1) may be used to reduce the dimension of

P4 directly by variable elimination or be employed as linear inequality constraints.
Assuming either that a variable elimination has been performed or that the current
approximation in an iterative solution procedure belongs to the interior of S,
problem P4 will have the general form: arg min~u2D L(~u). Considering that C3 is
active, we reformulate P4 using the equality form �(u) = t of C3:

min
~u2 ~Uad

fbTu+ b0�(u) + dg , min
~u2 ~Uad

f�(u)� qTug where q = �b=b0

(20)
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Using the definition (12) of �(u), we rewrite (20) as:

P5 : min
u2

~Uad

f

lX
j=1

Wj(u)� (p+ q)Tug: (21)

From the engineering viewpoint P5 expresses the equilibrium of a structure
consisting of the resisting elements of the initial structure with indices 1; . . . ; l
(cf. the definition (12)) subject to a set of unilateral constraints (i.e. the assumed
positions of the internal boundaries @
j). On this structure act the initial external
loads augmented by ‘load’ vector q induced by the softening part of the structure
(elements with indices l + 1; . . . ;m) [26, discussion of x5].

Large nonsmooth minimization problems with the same sparsity pattern and
dimension of the same order as P5, have been studied extensively in recent years
because they constitute the typical form of the equilibrium problem arising when
monotone (maybe nonsmooth) material or interface laws are employed. For their
treatment efficient algorithms have already been developed exploiting their partic-
ular sparsity pattern and the availability of second order information for the poten-
tials and the constraints involved. Methods of the nonsmooth quadratic approxi-
mation family (NSQP) have been proved to be robust and effective for this kind
of problems, due to their global convergence and the superlinear convergence rate
[9, 22, 30].

Summarizing the present section we see that the discrete form P1 ofPr was first
transformed into a d.c. minimization problemP3 that is then solved by an algorithm
of the branch and bound type. Each iteration of this procedure requires the solution
of a linear minimization problem P4 that is approximated by a sequence of convex
minimization problems P5 whose efficient treatment is made possible, despite the
large size, by the special structure of the potential and the constraints.

4. Discussion and Numerical Application

The method described in the previous sections has been applied to an illustrative
example. We consider a metallic rod embedded in an elastic material, glued to it by
a resinous adhesive having a smooth softening response (Figure 1a). An increasing
tensile force is applied to the free end of the rod until it is extracted from the
surrounding mass. A similar example was examined in [24, x4] and it used for
comparison.

The materials of both the cylinder and the surrounding mass are assumed lin-
early elastic and simple quadrilateral constant stress elements are employed for
modeling both bodies. In [24] the softening behavior of the binding material in the
tangential direction was described by the sawtooth nonmonotone laws (graphs a,
b of Figure 1b) while here the adhesive material is modelled by the continuously
softening law (graph c of Figure 1b).

For the application of the proposed method the strain space for the interface
elements is divided into three partitions: (e � 2:5 � 10�3); (2:5 � 10�3 � e �
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Fig. 1. a. Embedded rod under tensile load. b. Nonmonotone interface law (a, b: sawtooth laws, c:
smooth softening law.)

3:5�10�3); (3:5�10�3 � e). We note that the softening behavior of the structure as a
whole made necessary the introduction of some kind of direct displacement control
through a bound on the displacements of the free end. The load-displacement graphs
obtained with the present method up to the complete release of the rod compare
quite well with the results given in the reference, when the different deformation
energy capacity of the stress-strain graphs is taken into account.

Concerning the requirements of computational resources for the implementation
of the proposed method, we note that if an NSQP type of approach is used for
the solution of the convex minimization subproblems P5, then the computational
memory needed increases linearly only with the size of the problem (a property
that is critical for large scale problems of mechanics).

In Figure 2 we have depicted the computation time required by the present
method (as implemented on an HP750 workstation) for the solution of the equilib-
rium problem for different extraction lengths (line c). The extraction length offers
a indication of the complexity of the problem since the number of the interface
elements operating in the softening regime increases with it. In the same figure are
shown the computation times given in the reference for the treatment of the saw-
tooth interface laws. Observing that the computation time increases significantly
with the number of decreasing vertical branches of the stress-strain graph we see
that the present method is better suited for the treatment of nonmonotone material
laws where the gradual loss of strength prevails while the distinct vertical branches
are few. We note that the trials performed until now indicate that the computational
effort tends to increase linearly with the complexity of the problem (number of
nonmonotone elements, complexity of the laws used etc.).

In Figure 2 is also shown the time spent by the procedure in the solution of
quadratic programming (QP) problems required for the treatment of P5. From this
graph it becomes evident that the solution of the QP problems is taking up a major
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Fig. 2. Total computation time (c), time spend by the QP solver and computation times from reference
[24] (a,b).

part of the total computation time. Considering that a general purpose sparse QP
solver has been employed in our implementation, we expect significant time savings
from its replacement by a solver that exploits the band structure of the curvature
matrices involved in the computation. We note that for a particular application
the computation time can be further reduced if some specific characteristics of the
problem are used for simplification of the intermediate approximation steps [22,
x4,5].

5. Conclusions

A numerical method for the treatment of a family of hemivariational inequalities
has been presented. The method uses a multilevel decomposition of the solution
space and the appropriate structure decomposition to solve the hemivariational
inequality through a sequence of d.c. minimization problems. The latter resolve
into a sequence of convex minimization problems of large dimension which can
be solved by existing efficient algorithms. Since the requirements for the multi-
level decomposition are minimal, this approach can be applied to a wide range of
hemivariational inequalities. Moreover, the structure decomposition can be easily
automated.
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